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The effect of entanglements on the viscosity of a 
polymer melt 
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Theoretical Physics Department, The Schuster Laboratory, University of Manchester, 
Manchester M13 9PL, UK 

Received 2 February 1973 

Abstract. This paper continues the work of the authors on the effect of entanglements on 
polymer melt properties. The gaussian chain model is used, together with the pipe constraint 
previously discussed, to calculate the viscosity of the melt. This is done employing a time 
correlation function which is derived from the Fokker-Planck equation of motion. The 
model predicts viscosity proportional to M ,  the molecular weight, below the entanglement 
point M , ,  and M 3  above M , .  This compares reasonably with the ( M ,  M3’4) dependence 
observed experimentally. It is speculated that the remaining discrepancy may be related to 
a critical index phenomenon. 

1. Introduction 

This paper attempts to set up a statistical mechanical theory of the viscosity VI of a 
polymer melt. Experimentally i t  is found that VI depends on the molecular weight M 
in the following way, 

where M ,  is a molecular weight characteristic of the polymer, and represents the onset 
of entanglements. The situation has been reviewed by Porter and Johnson (1966). 

This paper is an attempt to put entanglement effects on a more satisfactory basis, 
and continues the work of the preceding paper (Edwards and Grant 1973, to be referred 
to as I )  in which the effects of topological constraints on diffusion were considered. 
Entanglements were studied in I (i) by assuming a pipe constraint and imposing self- 
consistency, and (ii) directly from the topological invariants (see Edwards 1967, 1968). 
Both methods give essentially the same results and we can write down Langevin and 
Smoluchowski-like equations to describe the diffusive motions. 

For M < M, ,  the Langevin equation is 

vi.(s, t ) -  cr”(s, t )  = $(s, t ) ,  (1.2) 
where r(s, t )  is a point on the chain, s represents an arc parameter, t the time. v is a 
friction coefficient and hence v i  represents the friction of chains rubbing against one 
another. CY” is the intramolecular entropy force E = 3kT/21, and @(s, t )  is a random 
force arising from the microbrownian motion of the system. The inertial term has been 
neglected, the diffusional limit being presumed to hold. r(s, t )  is taken to be a continuous 
t Now at the Cavendish Laboratory, Cambridge. 
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chain and the Wiener integral model is used. This can be written in Fourier transformed 
form 

iEvr(w, E )  + rw2r(w, E )  = $(U, E) ,  M M, ,  (1.3) 

where E is the Fourier conjugate of t ,  w is the conjugate of s. r(s,  t) is really of finite 
length L, and as such we should have a Fourier series in n on s and not a transform, 
however the latter is more convenient and we use it provided we remember that by 
L/2nJ  d o  we mean C, and by w, 2nnlL. 

For M > M,, the Langevin equation is modified to 

{ iE(v + p7(w)) + cw2)r(w, E )  = $(U, E ) ,  

where 

z(w) = - q l +  ( 1  +--) 4€02 l j 2  ] 
2€W2 

and p is a constant representing the strength of entanglements. In effect the entangle- 
ments increase the friction coefficient from v to v+pz(w). For w large corresponding 
to short range motions between entanglements v +  pz(w) -, v for w small, the long range 
modes have v + p(0) 2: pv/cw2. The corresponding Smoluchowski equations are : 

G(r, r', t, t') = n 6(r(w) - r(w'))d(t - r ' )  
0 

{:-&I d w 6  g( ~ 6 
3L 

6r (o )  v 6r(-w) 

and 

6(r(w)-r(o'))b(t-t '). (1.7) 
k T  (- 6 3L 

v+pz(w)  &(-a) 

1 is the effective monomer length and we note c = 3kT/l. 

system of particles the viscosity is given by the formula, 
The viscosity can be calculated by a time correlation function technique. For a 

1 "  
v = mJo (Jxy( t )JXy(o)>  dt, (1.8) 

where 

JXY = m i i i j i +  c y,FI"'. 
i i 

The ith particle has mass mi, velocity components Ai and j i ,  and is acted on by the 
x component of force FIX), the time correlation function is over an equilibrium ensemble, 
and the system is undergoing steady shear. This result has been derived from Liouville's 
equation by Mazo (1967) and has been used in the case of a dilute polymer solution by 
Stockmayer et a1 (1970). However Liouville's equation applies to a system of particles 
without any non-conservative forces such as friction acting between them. In the 
polymer case, we are dealing with long chain molecules which are certainly acted upon 
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by interchain frictional forces. It is possible to obtain a correlation function formula 
for q, but we must start not from Liouville’s equation, but from the Fokker-Planck 
equation over position and velocity space. This equation is 

6 3kT - fi. J dw ( ,wZr(w) 271 

= n 6(r(o) - r(w‘)) ~ ( u ( o )  - u(o ’ ) )  6(t - L’)~  
0 

where 

VI = v for M < M ,  
for M 2 M,. = v+pLz(o) 

This has the equilibrium distribution 

(1.10) 

(1.11) 

Equation (1.10) can be derived from the Langevin equation with the inertia term included, 
namely : 

mF(w, t )  + v’i(w, t )  + cw2r(w, t )  = @(U, t), (1.12) 

where E = 3kT/l by the standard theory of brownian motion, or alternatively can be 
checked by integrating over velocity space along the line 

V’ 

m 
r+u- = constant = ro.  (1.13) 

This then recovers the Smoluchowski equations (1.6) and (1.7). This scheme of obtaining 
a Smoluchowski equation from a Fokker-Planck equation is given by Chandrasekhar 
(1943) and the reader is referred there for details. 

In the following section, we derive the correlation function formula and then in the 
third section we use it to  calculate the viscosity. 

2. The correlation function formula 

The Fokker-Planck equation (1.10) can be modified to include all the chains in 
volume V, 

[%- chains 2n 
a 1 ‘sdw{L!?!(_____+--) 6 L mu(o)  

6v(w) m 64-w)  2n kT 
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where f is the (separable) distribution function of all the chains in volume V. This can 
be written as 

where 

L,,= - i  [k/dw{---(-- 6 kTv' 6 I L mu(w)) 
chains 6u(w) m S u ( - o )  2x kT  

(2.2) 

(2.3) 

The advantage of this notation is that we can write a formal solution, 

In equilibrium at temperature T ,  (2.1) has the solution, 

mL / /u(o)12 dm) (2.5) 
f =  n N e x p (  -21121/m2]r(co)12dw---- 3 L  

chains 2kT2n: 

where .Af is a normalization constant. 

velocity, 

g being the constant shear rate ; it is in a non-equilibrium state and is trying to relax to 
equilibrium. We consider f to be, 

(2.7) 

We consider the system to undergo simple shear on the xy plane, with macroscopic 

V = (gy, 0,O). (2.6) 

f ( t 0  + b) = fo(t0) + f i ( t O  + b) 

at time t o  + b, where fo is the local equilibrium distribution function, 

where r, V are at  time t o .  We require the correction term, fl(to + b), since the local 
equilibrium function fo cannot yield any shear stiess. Since f ( t o  + b) must satisfy (2.1) 

giving the solution which vanishes at to ,  

Now 

mu(o) 6 
- -{(u(u)-- V ) .  V }  kT 6r(o) 

- L i h ( o ) u ( o )  + 
kT 

(2.10) 

(2.1 1) 
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If we are considering only a small velocity gradient, we can neglect the terms in I/', 
and the last two terms of (2.11) cancel leaving 

mu(w) 6 302 
- ( u ( o )  . V) +-v(o)u(w) = -Jxy(r, U), (2.12) 

kT 640) 1 ) kgT 

where 

do(mu"(o)uy(w) + to'x(w)y(w)) 

= 1 ds(mu"(s)uy(s) - ~x"(s)y(s)) .  
chains 

(2.13) 

This is related to the stress tensor as can be seen from the following argument. 
Consider the average of a, where 

L 
a = - s d o  c mu(o) d(R-r(o)) 

2x chains 
(2.14) 

against the Fokker-Planck equation ; this will lead to the equation of momentum 
transport. Using the notation, 

and noting that a does not depend explicitly on time t3 

( a l ~ ) = ~ ( a l f )  = - 1 6 kTv' 
chains S u ( 0 )  m 

(2.15) 

(2.16) 

Integrating by parts and assuming that the surface terms in position and velocity space 
either vanish or are negligible, we obtain 

On substituting for a, the first two terms vanish, leaving 

a L 
- ( p V ) =  1 -!do 
at chains 2x 

(2.17) 

6 ( r ( o ) - R ) I f ) + ( c o 2 r ( w ) 6 ( v ( o ) - R ) ( f )  
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Now to a first approximation, 

If we ignore derivatives of the delta function, then 

a 
- ( p V )  = Vu, 
at 

(2.19) 

(2.20) 

(2.21) 

where 

do(mu(o)u(-o) 6(r(w)-R)+r(o)ew2r(-o)6(r(w)-R)If) .  (2.22) 

(2.21) is the linearization of 

(2.23) 
d 

- ( p V ) + V ( p V .  V )  = v .  0 
at 

and is consistent with ignoring the difference between u and U- Vas in (2.12). 
If we define J(r ,  U, R), 

L 
- [ dw(mu(w)v( - w) 6(r(w)- R)  + cw2r(w)r( - w) 6(r(w) - R)),  J(r ,  U, R )  = 

the relationship between J(r ,  U, R )  and J(r, U) is apparent. Thus 

(2.24) 
chains 2n: 

(2.25) 

(2.26) 

where p(R) is the isotropic pressure. Only fl contributes to diy. Thus 

(2.27) 
L 

diy(R) = Jxy(r, U, R)  1 - s dwfi 6(r(w) - R ' ) n d r  du dR'. 
chains 2x 

Substituting for f i  from (2.10) and (2.12) 

(2.28) 

Since e-ibL is the time propagation operator taking a function @(r,u)  to ( rb ,ub)  
where (rb, ub) is the phase evolving from (r, U) in time b, 

diy(R) = s s,' ( J x y ( r A ,  vi.,  R)JXY(r, U, R)If,) dR' d),, (2.29) 

where t = t ,+z,  b = t,+b' and b-t = b'-z = A. 
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We assume that there is no correlation between the J X Y  in different volume elements, 
and that any correlation exists over macroscopically small distances, so we can write, 

1 
V (Jx”(rl ,  u ~ ,  R)J””(r, U, R’)Jfo) = ~ ( R - R ’ ) - ( J ” ” ( v , ,  uL)J””(Y, U)) (2.30) 

and hence 

(2.31) 

It would appear that r]  depends on 5.  This is illusory since the time correlation 
(JxY(t)JxY(0)) is assumed to decay to zero in a time short compared to the time necessary 
for momentum fluxes to develop in a local equilibrium ensemble, which in turn is short 
in comparison to the time over which macroscopic variables change appreciably. 
Thus we may set z = 00 giving 

(2.32) 
1 “  

r]  = I/kT s, (J”’(t)J”’(o)> dt 

with (2.13) defining J x Y .  
In reality the chain monomers have only two degrees of freedom rather than three, 

corresponding to the fact that the monomers are linked together to form a chain. 
This point is discussed by Edwards and Goodyear (1972). All this will do is alter the 
coefficients in the Fokker-Planck equation, but the analysis will follow through in the 
same way except that we should define JxY as, 

2k T 
1 mux(w)vY( - U) + ---02x(w)y( - U)  

(2.33) 

the coefficient of the latter term being reduced by a factor of 5. We will work with the 
form of (2.33), in the calculation of r] .  

3. The calculation of q 

The correlation function for the viscosity q can be expressed in the form, 

r]  = (Q) J: (Jxy ( t )Jxy (0 ) )  dt, 
MkT 

where NA is Avogadro’s number, M is the polymer molecular weight, p the density of 
the system and JxY is defined for one chain, 

Jxy( t )  = JoL mt(s, t ) j ( s ,  t )  ds - (3.2) 

Since we are dealing with the diffusional limit and mi: << zr“, vi. we can ignore the inertial 
term and approximate, 

2kT 
JxY( t )  N - Jo y(s, t ) I ~ ” ( s ,  t )  ds, (3.3) 
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and we can perform the average of (3.1) purely over configuration space, the integrals 
over the velocity space contributing a factor unity, because of the normalization. 
We can write 

J”’(t) = __ - dow2x(o)y( - W )  d o  
2kT 1 2n: “ J  (3.4) 

giving 

We only get contributions from w’ = - o in the averaging over the equilibrium distribu- 
tion. Thus 

( J x Y ( t ) J x Y ( O ) ) =  (y ) 2k Jdom4(x(w, t)x( - w, O) ) (y (o ,  t)y( -0, 0)) .  (3.6) 

The averages can be separated in this way only because we are dealing with gaussian 
distributions. The factor outside the integral contains L/2n and not ( L / 2 7 ~ ) ~  because 
we are really dealing with an infinite Fourier series rather than a Fourier integral. 

where o = 2nn/L, the corresponding contributions only occurring for n’ = n. 

For a free chain v‘ = v and 
We must now calculate the correlations ( x ( w ,  t)x( -a, 0 ) )  and ( y ( o ,  t)y( - U, 0)) .  

giving 

(J”y ( t )Jxy (0 ) )  = ( 2 y ) 2 ; ; J  - - d o  exp ( -- 2 c y 2 t )  

and hence 

(J”’(t)J”’(O)) dt = s 
Reverting to discrete notation it is clear that by L/2nJ d o l o 2  we understand 

1 L2 
n = l  1-- n2 4n2 

giving the result 

NpvlL2 1 
M6n2 c 7’ q=- 

(3.9) 

(3.10) 

(3.11) 

identical to that obtained by Rouse, except that the sum is an infinite one, rather than 
cut off at  N ,  the number of gaussian submolecules. This predicts q a M in agreement 
with experiment since L K M .  
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For an entangled chain with the pipe constraint with z(o) given by (1.5) 

( Y ( 0 ,  t)Y( - 0 3  0 ) )  = ( x ( w , t ) x (  - w, 0 ) )  
L ( ~ J o ,  E)4:(o, E ) )  eiEr dw dE 

9 

where to satisfy the random walk condition 

( ( r ( s ,  t )  - r(s’ ,  t))2) = I/s - s’/ 

Thus 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

is obtained on substituting (3.14) into (3.12), integrating over E and substituting for 
z(w). (3.8) was obtained in a similar way with pz(w) = 0. Hence 

Thus for L large, the small w modes dominate the integral and hence the right-hand 
side can be approximated by 

Substituting into (3.1) gives 

q=- -  

on re-expressing as a series. Thus, 

q cc p v M 3  

since M cc L. Thus our model predicts 

rlx M ,  

q a M 3 ,  

in comparison with the experimental 

M 2 M ,  

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

No account was taken of excluded volume in this calculation. If the dynamical 
friction term k(w) in I were included and were a possible non-analyticity to arise in 
h(w), these will lead to a higher power, but that needs a further and more difficult 
calculation before it can be claimed to be the source of the 0.4 discrepancy in the power. 
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4. Conclusions 

The model of a gaussian chain with entanglements incorporated via a pipe constraint 
proved useful in the calculation of viscosity. The behaviour obtained is qualitatively 
in agreement with experiment. It remains to incorporate excluded volume, chain 
stiffness and polydispersity into the model. Of these only excluded volume effects are 
felt to be the cause of the difference between the 3.0 power of M in theory and 3.4 
experimentally. The correlation function technique has been put on a firmer basis for 
the polymer case, by its derivation from the Fokker-Planck equation rather than merely 
taking over the result ad hoc from the theory of particles. 
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